

 MIDDLE EAST TECHNICAL

UNIVERSITY

COMPUTER ENGINEERING

DEPARTMENT

FINAL DESIGN

REPORT

CENG 491

 - 2 -

1. INTRODUCTION 4

1.1. PROJECT DESCRIPTION 4

1.2. PROJECT GOALS AND SCOPE 4

1.3. PROJECT FEATURES 4

1.4. DESIGN CONSTRAINTS 5

1.5. PURPOSE OF THE DOCUMENT 5

2. PROJECT REQUIREMENTS 6

2.1. FUNCTIONAL REQUIREMENTS 6

2.1.1. MENU REQUIREMENTS 6
2.1.1.1.General Requirements 6
2.1.1.2.Menu Items Requirements 7

2.1.2. GAME FLOW REQUIREMENTS 8
2.1.2.1.Game Logic Requirements 8
2.1.2.2.Environment 9
2.1.2.3.Player’s Car 9
2.1.2.4.Player – Game Interaction Requirements 9

2.1.3. OPERATIONAL AND STRUCTURAL REQUIREMENTS 10
2.1.3.1.Game Engine 10
2.1.3.2.Graphics 10
2.1.3.3.Sounds 10
2.1.3.2.Artificial Intelligence 11
2.1.3.3.Physics 11
2.1.3.4.Game Data 11
2.1.3.5.Networking 11

2.2. NON-FUNCTIONAL REQUIREMENTS 11
2.2.3. USABILITY AND PLAYABILITY 12
2.2.4. RELIABILITY AND SECURITY 12
2.2.5. PORTABILITY 12

2.3. SOFTWARE REQUIREMENTS 12

2.4. HARDWARE REQUIREMENTS 12

3. GAME SCENARIO 12

3.1. TRAINING 13

3.2. CONNECT AND PLAY WITH OTHER USERS 14

4. INTERFACE DESIGN 15

4.1. MAIN MENU DESIGN 15

4.2. ONLINE GAME MENU DESIGN 16

4.2.1. LOGIN MENU 16

4.2.2. SIGN UP MENU 16

4.2.3. FORGOT PASSWORD MENU 17

4.3. TRAINING GAME MENU DESIGN 17

4.4. OPTIONS MENU DESIGN 18

4.4.1. AUDIO MENU DESIGN 19

4.4.2. CONTROLS MENU DESIGN 19

4.4.3. GRAPHICS MENU DESIGN 20

4.5. CREDITS DESIGN 21

4.6. GAME SCREEN DESIGN 21

 - 3 -

4.7. CAR MARKET MENU DESIGN 22

4.8. BUY FUEL MENU DESIGN 23

5. INFRUSTRUCTURE 23

 5.1. DELTA3D 23

5.2. CAL3D 24

5.3. OPEN DYNAMICS ENGINE 24

5.4. OPENAL 25

5.5. ARTIFICIAL INTELLIGENCE ENGINE 26

5.6. NETWORK 26

5.7. DATABASE 27

6. DETAILED DESIGN 28

6.1. OVERALL GAME STRUCTURE 28

6.2. NETWORK STRUCTURE 32

6.3. PHYSICS ENGINE 36

6.4. PLAYER RELATED STRUCTURE 37

6.5. ENVIRONMENT 38

6.6. CAMERA RELATED STRUCTURE 40

6.7. MENU STRUCTURE 42

6.8. SOUND ENGINE 44

7. ACTIVITY DIAGRAMS 45

8. UML 47

8.1. SEQUENCE DIAGRAM 47

8.2. COLLABORATION DIAGRAM 51

8.3. DATA FLOW DIAGRAM 53

8.3.1. DFD Level 0 53
 8.3.2. DFD Level 1 54

8.4. USE CASE DIAGRAM 55

8.5. STATE TRANSITION DIAGRAM 57

9. DATABASE DESIGN 59

10. SYNTAX SPECIFICATION 65

10.1. DATABASE NAMING CONVENTIONS 65

10.2. FILE NAMING CONVENTIONS 66

10.3. CLASSES 66

10.4. METHOD AND FUNCTION DEFINITIONS 66

10.5. GENERAL CODING PRINCIPLES 66

10.6. VARIABLE NAMING CONVENTIONS 66

10.7. COMMENTING 67

11. GANNT CHART 68

 - 4 -

1. INTRODUCTION

1.1. PROJECT DESCRIPTION
The main purpose of the project is to develop a massively multiplayer 3D online game

which is played via internet through all over the world. The game is formed considering real

life conditions so the player can feel the reality and live his own virtual life by gaining money

and spending it to necessary things to keep going his life in the game. The title for the game is

“The TAXI”. Because initially all users are given a commercial taxi and the game is mainly

played with this car.

1.2. PROJECT GOALS AND SCOPE
The goal of this project is to design and implement an interactive, massively multiplayer

online 3D game up to a position such that it can be released for commercial purpose. The

resulting program will be real-time, realistic with its graphical environment and car physics.

 During development of project, we will follow the below methodology.

 Analyzing the current car racing games

 Analyzing all the requirements and specifications for the game

 Design of a game according to the defined criteria

 Detailed search on the requirements and solutions

 Implementation and testing of the game

 Technical support and documentation

1.3. PROJECT FEATURES
Discarding the details, our project will have mainly following features:

 3D Computer Graphics: Since visualization is in vital importance in a 3D game we

will make a special effort on graphics design. We will provide advanced graphics by

using some high level OpenGL libraries.

 Artificial Intelligence: Our game is not a pure car racing game but also a strategy

game, so AI is highly important. We model our artificial intelligence system according

to our needs. For example there are artificial customers, traffic and some logical

objects. Then we will make a good organization among them.

 Updatable 3D Tracks and Environment: We will provide a plug-in to load the

newly designed roads as patches. By this way we can achieve to make user playing the

game continuously. Since we will try to do everything dynamic as much as possible it

is, we can add new features to our game.

 Animation: We have modelled the scenario according to real life, so for our game to

be realistic it will support animation. This can be a person animation, an environment

object animation or a car animation which is highly needed to make smooth transitions

between positions while the data packages are coming through network.

 Game Physics: Game physics is required to make the effects appear more realistic to

the observer, in our case the player. We will model the car physics, collision detection

and also the physics of the other objects.

 - 5 -

 Network Part: Our game will be played via internet so there will be a server to which

all users have to conect to play the game. The server will form the core part of the

multiplayer concept. It will have artificial intelligence inside as well as the connection

to client part. There will also be a big database which keeps the account information of

the registered users and another onde holding the online users at that time.

1.4. DESIGN CONSTRAINTS
Software has many constraints as any other real life jobs. Since our project is a time

limited project and we are lack of manpower, constraints are more important in our project.

 Project Schedule
The schedule of our project is explained in the Gantt-Chart part. According to this time

chart, the project has to be designed and implemented in 8 weeks. Workload must be scattered

equivalently because of the demos that we are supposed to make, which are in fact small

milestones for us.

 Language Constraints
We will use an object-oriented language to program the game, because the best

granularity can be achieved by the help of OO languages. Since the development environment

we will use supports C++, we have chosen it.

 Data Constraints
As we process a heavy visualization and store the data for other users we need a huge

amount of data storage on users’ PC. Server side is not so different from the client side. Since

we will hold map info, registered users info, car info, environmental info etc. on server, there

will be heavy data traffic between server and clients.

 Execution Speed
To be realistic especially in a massive online game, data transfer should be fast and

minimal. Also to obtain a perfect smooth transition between frames we need to supply

minimum 24 frames per second refresh rate. Since we need to pass info about the traffic in

city to every user, we must optimize the data packages that will be sent. This should be

obtained by sending traffic info of only a limited area which is closer to player’s car. Near the

fact that data transfer should be quick, graphic display must also be optimized. Since we will

generate 3D scenes, we must use optimized algorithms so as not to consume CPU very much,

which may decrease the performance in advance. While using optimized algorithms in

graphics, we should also take care of the trade off between graphics quality and execution

speed.

 User Interface
The user interface will be simple and easy to use. Menus should be provided in a logically

categorized way. User should be able to play game without need to enter several menus,

because many people do not like visiting several menus so as to play a game.

1.5. PURPOSE OF THE DOCUMENT
The goal of this document is to explain the initial design about the game by covering

the following parts:

 Game concept

 Game scenario

 Game user interfaces and explanations

 - 6 -

 Game class diagrams

 Game DFD diagrams (also the other diagrams)

 Game engines

 Game network

 Game database

2. PROJECT REQUIREMENTS
Software requirements is the documentation that completely describes the behavior

that is required of the software—before the software is designed, built, and tested. Any

coherent and reasonable project must have requirements that define what the project is

ultimately supposed to do.

Since we have changed our scenario according to the customer’s request, we need to

re-specify the requirements of our project. Despite the fact that our ex-scenario was also

related to cars (namely it was a car racing game), there are many important differences which

forced us to make a new requirement analysis. So we will state the requirements here again

for “The TAXI” project. Since our new scenario is explained in detail explicitly in this report,

we will only define the requirements related to the scenario here.

2.1. FUNCTIONAL REQUIREMENTS

Functional requirements define the internal workings of the software: that is, the

calculations, technical details, data manipulation and processing and other specific

functionality that show how the use cases are to be satisfied.

 Functional requirements fall into three groups of types, namely normal requirements,

expected requirements and exciting requirements.

(*) Normal Requirements: The objectives and goals that are stated by the instructor and the

assistant of the course. These features are expected from a massively multiplayer online game.

(**) Expected Requirements: These requirements are implicit to the product and so

fundamental that the customer does not explicitly state them.

(***) Exciting Requirements: These features go beyond the customer’s expectations and

prove to be satisfying when present. These features are not guaranteed to be implemented

because of the time and manpower constraints.

2.1.1. MENU REQUIREMENTS
These are the requirements related to the menu that is displayed when player enters to the

game. This requirement is composed of two subtitles, namely general requirements for the

general properties of the menu, and menu items requirements for the functionalities of the

menu items.

2.1.1.1. General Requirements
This Main menu is displayed when player enters to the game and when a race is finished

and turned back to main menu.

 (*) This menu must be designed esthetically so as to be attractive for the player.

Suitable colors must be selected and elliptic shapes must be used instead of cornered

shapes.

 - 7 -

 (*) Player can move on sub-menu titles with keyboard by clicking up-down arrows.

And also user can freely move and use mouse for entering sub-menus.

 (**) When player comes on a sub-menu title, some graphical changes must be done on

menu, such as flaming up a new transparent car object or logo on the menu screen.

Meanwhile a sound may also be played.

 (**) A suitable music is played when user stays inside this menu.

2.1.1.2. Menu Items Requirements
 Training

� (*) A new user will need to learn how to play the game. Since there is some

specific concepts and roles that are new to people, new players will be able to

play some duties one by one.

� (**) User will be able to select the training that s/he will play.

� (**) Training menu leads to a training sub-menu in which user selects the

training. Trainings will be listed here and their titles are: City Tour, Serving

Passenger, Buying Fuel, Maintaining Car, and Visiting Car Market.

� (**) When a training is selected, game will start in training mode. In this mode

player will be informed with a bubble menu about the movements that s/he

should do for completing the mission.

 Online Game

� (*) When an internet connection exists, user will be able to connect to the main

server, and play online game with people from all over the world.

� (**) When clicked, a sub menu will appear for carrying out the connection to

the server. User will be able to connect to the online game if s/he enters the

right username/password combination.

� (**) If user doesn’t have an account, s/he can get a new account by clicking

the “Sign Up” button. This button will lead user to a new sub-menu in which

s/he will be asked for “Username”, “Password”, ”Password Confirmation”, and

“E-mail Address”. User can form a new account by clicking “OK” button. If an

error occurs, user will be informed about the progress.

� (**) If user has an account but forgot the password, s/he will be able to get

his/her password. For this purpose, s/he must click the “Forgot Password”

button. And from the coming sub-menu, s/me must click the “Send My

Password to My Mail” button. By that way, password of the user will be sent

to the e-mail address of the user that s/he had assigned when s/he first sign up.

� (**) By clicking “Login” button, user will connect to the online game.

 Options

� (*) Users can adjust the general options related to the game.

� (**) User can change the speed unit that is displayed on the race screen.

Choices are km/h and mph from the “Speedometer” section.

� (**) User can make changes on audio settings. A submenu exists in options

menu for audio. In this menu “Menu Music”, “Car Radio”, and “Sound

Effects” sections exist, which are used to increase and decrease the sound of

the related kind.

� (**) Users will be able to visualize and change the game controls (which will

only be on keyboard).

� (**) Users will be able to change the graphics options from the submenu that is

opened by clicking the “Graphics” button. This submenu includes “Screen

 - 8 -

Resolution”, “World Detail”, “Car Detail”, “Texture Detail” and “Viewing

Distance”.

� (**) Screen resolution will be able to set to either 800x600 or 1024x768 which

are suitable for most of the screen cards used widely today.

� (**) User will be able to adjust world detail, car detail and texture details to

high, medium or low. Best quality will be gained at “high” level, but due to the

hardware constraints, user may want to set these to medium or low.

� (**) Viewing distance will be able to be set by the user as “far” and “near”.

This option will define how far distance will be rendered. For a more realistic

feeling, this must be set to far. But it may be set to near because of hardware

constraints of the user.

 Credits
� (**) This menu will list the names of the members of the project team, related

information about our company, and names of the individuals and corporations

that we have taken help from.

� (**) This list will slide slowly on the screen while music is played at the

background.

 Quit

� (*) User can return to the operating system by clicking “Quit”.

2.1.2. GAME FLOW REQUIREMENTS
These are the requirements that are related to the game play. We examined game flow

requirements in four subtitles: Game logic requirements, Environment requirements, Car

requirements, and player-game requirements.

2.1.2.1. Game Logic Requirements
 (*) Since this is a game we are producing, players should not get bored while playing,

besides game should make them play more as they play. We will provide this fact by

exciting the avidity of human to money and success.

 (**) Our game is mainly a massively multiplayer online game. So we provide user to

play with other players all over the world. User also will be able to play offline game,

but this will be limited game just for training of the user.

 (**) User will earn money by serving customers to destinations given and when

selling his/her car, and lose money when buying fuel, paying traffic taxes,

maintaining car, buying a new car.

 (**) When user first starts game, s/he will be a free taxi driver, i.e. s/he will not be

member of any cabstand. But as player earns money, s/he will be able to enroll to a

cabstand in exchange for a reasonable amount of money. In short player and the

owner of the cabstand will obtain a contract. (Owner of a cabstand is the server as

default)

 (***) Player may buy shares of a cabstand, a fuel station, a car maintenance shop. By

that way user will be able to earn more money. But there will be trade-offs. Shares of

the owner should gain or lose value, thus making player feel more excitement.
 (***) Player can buy traffic insurance.
 (***) Crashing will give damage to both cars, responsible player from the crash will

pay the money of the counter side, where as his/her car will be damaged and this will

make him/her lose customer unless s/he repair his/her car. If the player has traffic

insurance, damage will be supplied by the insurance company.

 - 9 -

2.1.2.2. Environment
 Terrain, Buildings and Objects

� (*) Game must have a terrain which gives the feeling of realism to player.

� (**) Terrain will consist of sky, ground, road, buildings, skyscrapers, trees, and

some extra objects such as statue, street lamps, dustbin etc.

� (**) Car is not permitted to get out of the road. This will either be satisfied by

putting protective embankment on borders of the road, or by just preventing

the car from getting out of the road as if it can not climb over pavements.

� (**) There will be people on road, some of which will be the customers

waiting for a taxi.

� (***) Some external objects can be drawn such as a passing helicopter, plane,

ship etc.

 Cars
� (*) There will be other players’ taxies and city traffic on the game

environment.

� (**) Cars can crash. Crashing will give damage to both cars.

� (**) Wheels of the cars will turn left and right according to the direction given

by the player.

� (***) Smoke can arise from the car in serious crashes.

� (***) Sparks can rise from car when it crashes with a barrier.

2.1.2.3. Player’s Car
 It has movement capabilities

� (*) Go forward, go backward.

� (*) Turn left, turn right.

� (*) Stop suddenly by using handbrake.

 It has external effects
� (**) It can sound the horn.

� (**) When stepped on break, back break lights are turned on.

� (***) When stepped on break suddenly, car tires will mark the road.

2.1.2.4. Player – Game Interaction Requirements
 (*) Player controls the car with the keyboard.
 (*) Game uses monitor and speakers to send output to player.

 (**) Player can view the game from different outside camera views, namely they are

near and far views.

 (**) Player can view the game from inside the car, i.e. view the steering wheel,

speedometer, etc. as in real car.

 (**) Player can see the road map, back of the car from mirror, fuel status, speed, motor

spin and gear of the car. All these are located in suitable positions on screen.

 (**) Player will be informed about important events such as obligation to pay tax, or

need to serve a customer from the cabstand etc. via a message bubble located in a

suitable position of the screen.

 (**) Player will be able to monitor the money that s/he has.

 (**) Player will be able to monitor state of the career of himself/herself (i.e. if player

satisfies the customer, his/her career will be successful, and it will become

unsuccessful otherwise).

 (**) Player will be able to monitor the status of car damage and also the status of the

driving license that s/he has. All these four status viewing sections(money, career, car

 - 10 -

damage, driving license) will be located altogether at upper right corner of the screen,

and user will be able to show/hide this menu with just one click and also with a

keyboard shortcut.

 (***) Player will hear motor sound, changing according to the motor spin.

 (***) Player will take a shaking view when a crash occurs and camera view is from

inside of the car.

 (**) Player can pause the game by clicking only if s/he is stopped the car near the

road, by clicking ESC key. Then ESC menu will appear. Pressing ESC while car is

moving is not allowed since this may affect other players. User may leave the game

via this menu.

 (**) Player can adjust the radio settings such as changing channel, decreasing volume

etc. from the sub-menu button located at the bottom of the screen.

 (*) Player can exit from race, exit from game directly from the escape menu of the

race.

 (*) Player can resume the game from the escape menu of the race.

 (**) Player can see the statistics of his/her car via the submenu that is opened when

“My Car” button is clicked which is located at the bottom of the screen.

 (***) Player can follow status of his/her extra jobs such as the state of the shares of the
fuel station, cabstand etc. via the submenu which is opened when “Extra Jobs” button

is clicked that is located at the bottom of the screen.

2.1.3. OPERATIONAL AND STRUCTURAL REQUIREMENTS
These requirements form the basics of the game. These objects affect the reality of the

game, thus give user enthusiasm to play more and more. We examined these requirements in

six subtitles: Game engine, graphics, sound, AI, physics, game data, networking.

2.1.3.1. Game Engine
 (*)The core functionality typically provided by a game engine includes a rendering

engine for 2D or 3D graphics, a physics engine or collision detection, sound,

animation, artificial intelligence, networking, and a scene graph.

 (*)Combines the subcomponents of the game.

2.1.3.2. Graphics
 (*) Renders the scene in 3d mode.

 (**) Maps the textures on objects.

 (**) We need to apply some tricks to improve the performance of the game without

disturbing the user. For instance, instead of using many lights, we should use textures

that have the light effect on themselves and so on.

 (***) Draws the objects that are far to camera with low quality than that are near.

2.1.3.3. Sounds
 (**) Menu clicks; passing from menu to menu actions produces sound.

 (**) In main menu and escape menu, music is played at the background.

 (**) Motor sound is played during race, changing according to motor cycle.

 (**) Collision sound is played on car crashes.
 (**) Cars can horn; this sound will also be played.
 (**) Music is played during game by the help of car radio component.

 - 11 -

2.1.3.4. Artificial Intelligence
 (*) There will be city traffic which is controlled by the AI.
 (**) Server will distribute customers to the free taxi owners and also to the cabstands.

 (**) Computer will judge the guilty side on crashes, and give punishment accordingly.

2.1.3.5. Physics
 (*) Car must obey to the real world physics rules.

 (***) Car should wave by help of shock absorber’s movement.

2.1.3.6. Game Data
 City

� (*) Terrain

� (*) Objects

� (*) Buildings

 Sounds
� (*) Menu clicks

� (**) Speeches

� (**) Music

� (**) Motor/Horn/Collision/Crash

 Player Info
� (*) Account info

� (**) Properties of the car, status of money, career, driving license, fuel etc.

� (**) Free taxi or member of a cabstand

� (***) Extra job info

 (**) Game settings info. General game settings must be saved, and changes that user

has made must be permanent (i.e. not change to default when game is started each

time from the OS.)

 (*) Textures
 (**) Car features/photos/statistics
 (*) Car models(3D objects)

 (*) Images

 (*) Settings

2.1.3.7. Networking
 (*) Players will connect to a network game via internet

 (**) Server will collect the coordinates and statistics of each player, combine data,

manipulate collisions, add city traffic into account, then serve the data to every client.

This process will be repeated periodically. For increasing performance of network, we

need to send as limited information as possible. This may be gained buy sending only

the coordinates of the cars that are nearer to the player.

 (**) Server will be able to apply AI to city traffic.

2.2. NON-FUNCTIONAL REQUIREMENTS

Non-functional requirements support functional requirements, by imposing constraints

on the design or implementation (such as performance requirements, security, quality

standards, or design constraints).

 - 12 -

2.2.1. USABILITY AND PLAYABILITY
Since games are for fun, it must be easy to learn and use so as not to be boring for the

user. So we thought that menus must be designed as understandable as possible. Also we

planned to follow the traditional approaches in many designing menus, because players will

compare our game to car racing games that s/he has played earlier. So in design we inspired

by some other games on market.

 We will add training sections for the game, so as to educate new players. By that way

user will not be unfamiliar to game concepts when s/he is playing with his/her account on the

internet. In training sections, basic concepts of the game will be introduced.

 Near usability, playability is also very essential. User must not get bored when riding

car. Game will give the feeling of competition and use the greed of human for money and

success. Since people do not get bored when running after the greed, we will benefit from that

side of humans. Game will not be too hard or too easy. Namely becoming rich won’t be easy

and it will require much work. But also user will not get poor easily in game unless s/he

doesn’t work totally (i.e. computer will give chances to player to serve customers). Control of

the car will be efficient and easy as it is in most of the car related games that are on market

today.

2.2.2. RELIABILITY AND SECURITY
Game must be debugged very carefully. Product must be checked in many aspects so

as not to cause any problem to the end user. Since our game is also an online playable game,

security is very important for us. Protocols that we use must be integrated to system very

carefully. There shouldn’t be any open backdoor left on computers of players during and after

plays.

2.2.3. PORTABILITY
Since time is a big concern for us on this project, we will not be able to make a

platform independent game. Because this will increase our work from two to three, which will

make us fall behind our targets. Instead we will make our game platform dependent. And

since Windows has dominance on market, and project group is more familiar with Windows

concepts, we will make our game work well with Microsoft Windows.

2.3. SOFTWARE REQUIREMENTS
Windows operating system is needed for running our game. This is essential because

OS s provides the connection between programs and low level hardware.

2.4. HARDWARE REQUIREMENTS
 A PC with Pentium 4 class CPU

 Internet connection via modem or wireless or Ethernet card

 Sound card

3. GAME SCENARIO
In this part the scenario will be explained in details.

Although this is an online game it has to be installed to all users computer and then played

with other users by activating the online account.

When user starts the game first time, he is asked to create an account only by entering a

new username, and then the game is loaded for that user. If he has already an account, he

 - 13 -

selects his username and the game is configured for that user. Then there available two

options to user:

 Training or,
 Connect and play with other users

3.1. TRAINING
This part is designed to help user to learn how to play the game by visual and audio

interaction with user. When user selects training, he is redirected to the training menu. There

are some options which user can choose considering which part he wants to play or learn. For

example some possible options are:

 Explore the city
 Learn how to get fuel
 Learn how tosell and buy car
 Learn how to maintain and customize the car

 Learn how to a member of a cabstand

 Learn the tips of making money

 Learn how to communicate with other online users

If user chooses to explore the city, he just goes around the city and learns the roads,

streets and sees where some important buildings are which are highlighted on the map may be

on the right of the screen.

Purpose of the second option is to make user to try to get fuel for his car by going to

petrol station. There will be visual aids and sound interaction with user in this part and the

following parts which give user some commands to do. These are small missions to help user

to get the points correctly. When user enters the petrol station, a menu appears on the screen

where user can decide the type and amount of the fuel he wants to take. Since different type of

cars uses different type of fuels, there appears only the suitable ones for that car. And also the

user can see the cost of the choice he has decided.

In the third training part, user is taught to sell a car as well as to buy a car from the

autobazaar. User is commanded to run the car to the bazaar and enter the menu. On the menu,

there are two options: sell the existing car or buy a new one. When sell option is selected, the

value and the details of the user’s car is displayed on the screen so the user can decide

whether to sell at that cost. The value of each car is determined according some realistic

measurements such as the damage it has, the production year, the maintenance rate, the

motoring fine and etc. So when user customizes his car or pays the fines, he can sell his car at

a higher value. On the other hand, user can also buy a car by just clicking the buy button. At

this stage, the properties of the available cars are shown on the screen such as acceleration,

top speed, handling or other extra ones we may add, and user can go around them via

keyboard or mouse. Also the cash the user has and the cost of the car also displayed so the

user can see whether he can afford it.

At maintenance part, user is given the order to drive the car to the maintenance shop or

building and enter it. In this menu user is informed about the current parts of his car and also

the parts that he can buy for his car, the costs of the parts are displayed on the screen. There is

another option in the menu by which user can make his car get rid of from the damage as

much as he pays, so he can make his car healthy which is important to attract the customers.

 - 14 -

At being a member of a cabstand stage, user learns how to register himself to a

cabstand and the benefits of it. While driving the car, user can always see the available

cabstands and the short descriptions about them. The description includes some small

information such as the place of the cabstand, the popularity, the profit rate, how many

members it has as well as the money it requires to be a member of it. We have not decided yet

which informations will be displayed during free roam and while at that cabstand. But it is

certain that to be a member user has to go to that cabstand and accept the contract. The

contract includes some conditions about the membership such as the cost, the leaving

compensation and some other restrictions. The benefits of the cabstand will be explained in

the following sections.

In training, user also can learn some basics of how to make money which is required

for the continuity of the career. If user losts all of his money, he has to reset his career. In this

part, user is given some tips to spend less money or gain more. Some examples are “select the

shortest path while going somewhere, so the customer may give much money in consideration

of the time and you use up less fuel”, “obey the traffic rules so no punishment is given” and

other else.

User also will be given the details of how to communicate with other users and how to

play together or against some other players. All the messaging is done via chat which is

provided in the game. User can send message during the game without returning to the main

menu but with some restrictions. He can see his messages and send new ones after stopping

the car at the side of the road. Since our game is real life adapted, user can also guess what to

do, when and where to do.

3.2. CONNECT AND PLAY WITH OTHER USERS
When user wants to play online, he is asked for the username and password to connect to

the server. Then he resumes his career. He can see the career status on the screen, the map, the

status of the car and some extra things we provide. Playing online is not different from the

training part basically. Unlike from the training part, user has to be more careful about his

money, because he can end his career. So he has to fulfill even the simple rules to not to lose

money. The main goal of the game is make user to learn and apply the real life conditions to

this virtual environment and somehow feel the difficulty of the real life. He has to obey the

traffic rules, make the customer happy with extra things, pay the taxes regularly, attract the

customer by either upgrading his car, his fame or providing different things that other taxis

donot have, give less damage to car and etc.

User also has to be a member of a cabstand to make big money, because the cabstands

have both fixed and more customers. By selecting and being a member of a cabstand which

has high profit rate or not so many members, s/he can double his wealth.

After having enough money some users may come together and establish their own

cabstand and try to increase its fame among customers. This provides them to get the all profit

and hire whoever they want. The members of the new cabstand have to select a manager. But

the cabstand has to be managed very well to compete with the other ones. But due to the time

constraints, this part is not guaranteed to be manipulated.

There are also some extra features that we have not decided yet but can be good to

increase competition among users. The user can buy share from some buildings such as petrol

station, maintenance shop or others. He does not have to buy all of the shares. The more he

 - 15 -

pays, the more the shares and the profit he gets from that one. Manager is the one having the

highest share on that building. The manager is responsible for the prices, taxes, penalties and

etc. If he follows a good strategy on managing, he can double the profit. The more the money,

the easier the life.

4. INTERFACE DESIGN
Design of the user interface is in high importance, because interface is the vitrine of the

product with respect to the user. A shop with well designed vitrine attracts more customers;

same is valid for a software product. Furthermore this is a vital issue in computer games,

because players are seeking for better graphics quality.

In this part we will give information about the game menus. Since we give detailed

information about menus and their functionalities, we will not go into detail in this part. But

just give brief information about the menus and menu transitions.

4.1. MAIN MENU DESIGN

When game starts, main menu screen greets the user. This screen is designed in a way so

as to mirror the soul of the game in one sight.

User can start an online game from online game button, a training game by clicking

training button. For displaying and adjusting the game settings, options menu button must be

clicked. Then options menus will appear. For viewing the development team and info about

game preparation, credits menu button must be pressed. For exiting from the game to the

operating system, quit button must be pressed.

 - 16 -

We thought that full screen changes will not be very cute for starting a game. Because of

this reason, we designed most of the submenus to appear not full screen but inside screen.

Only options and credits menus are full screen submenus. Submenus related to game play are

all small submenus, which give user the feeling of quickness for playing the game. This is

essential because many people don’t like games because they open late.

4.2. ONLINE GAME MENU DESIGN
When user clicks the online game button first login menu appears.

4.2.1. LOGIN MENU

User can login to the server and thus to the game by typing the username and

password to the related fields and then pressing login. If information entered are incorrect,

user will be informed about the situation.

 If user does not have an account, s/he can get a new account from the menu that

appears when sign up button is pressed.

If user has an account but forgot the password, s/he can take his/her password via

forgot password menu.

4.2.2. SIGN UP MENU

User can obtain a new account by entering a username, a password, then confirm

password, and e-mail address. If username that the user wanted to obtain has taken before,

user will be informed, and requested to enter a new username. If password confirmation is not

 - 17 -

satisfied, user will be requested to re-confirm password. When Ok button is pressed and no

error occurred, account will be constituted.

4.2.3. FORGOT PASSWORD MENU

If user has an account but forgot the password, s/he can get the password by clicking send

password to e-mail button. When clicked, password of the user is sent to mail address of the

user that s/he assigned when taking the account.

4.3. TRAINING GAME MENU DESIGN

User can play different training games. For making a free city tour in order to learn the

streets, city tour training is designed. For learning how to serve a passenger, how to buy fuel,

how to maintain the car in case of a car crash or when a modification is wanted to be done,

how to visit the car market so as to sell/buy car, related buttons will be pressed and game will

start immediately.

 - 18 -

4.4. OPTIONS MENU DESIGN

Settings related to game play are adjusted from the submenus of options menu.

Type of the speedometer is may be set to either kmh (kilometer per hour) or mph (mile

per hour) from speedometer button, either by clicking mouse button or hitting left/right

arrows of the keyboard.

Audio settings, keyboard control settings and graphics settings may be done from the

submenu that appears when related button is clicked.

 - 19 -

4.4.1. AUDIO MENU DESIGN

Volume of the tune that is played when menus are active can be adjusted from “Menu

Music” field. During game, user will be able to listen to music, as it is the case in real life. We

named this concept as car radio, and volume of the radio may be adjusted from this menu.

Adjusting radio volume is also possible from inside the game. Volume of the sound effects

can also be adjusted from that menu.

4.4.2. CONTROLS MENU DESIGN

Our car is controlled by the keyboard. And the controls for the keyboard can be

adjusted from “Controls” menu. For adjusting a control, user will first click the control that

 - 20 -

s/he wants to change with mouse, then hit the key that s/he wants that action to be set. After

setting, when back button is clicked, program will turn to the main options menu by saving

last key configurations. Also user can load default key values for this menu, by clicking “Set

Default Keys” button.

4.4.3. GRAPHICS MENU DESIGN

User can adjust screen resolution either to 800 x 600 or 1024 x 768, by either clicking

with mouse or by hitting left/right arrow. Texture quality may be adjusted to low, medium, or

high. World detail and car detail may also be set to low, medium or high. View distance may

be set to either near or far.

 - 21 -

4.5. CREDITS DESIGN

This screen shows the names of the development team, and the people that we have taken

help from.

4.6. GAME SCREEN DESIGN

 - 22 -

This is the game screen. Player will be able to view the game from three different

camera views: Inside the car, outside near and outside far. View seen above is the outside far

view.

Up left corner of the screen shows the values of the fuel, speed, motor spin and gear.

Up right corner of the screen shows the status of the player: money that the player has,

career of the player, damage of the car, and the driving license point. Customer satisfaction

will affect the career of the player, at the beginning career will be 50 %, and change according

to customer satisfaction. Car damage display will start with 0 % at the beginning, denoting no

damage. When a crash occurs, car gets damaged and this info is displayed in “Car Damage”

section. When user first starts the game with a new account, s/he has 100 points for driving

license. As player commits traffic crime, points will be reduced from his/her driving license.

Down right corner of the screen shows the city map. Location of the car and the

location that the customer must be served will be indicated on the map.

Down left corner of the screen has the in game menu. Extra jobs button makes it

possible for the player to watch the state of his/her extra job. This part of the game is stated in

excited requirements. In short this button will give user chance to view the state of the shares

of a fuel station, or a cabstand etc. My Car button makes user learn about the statistics of

his/her car. Player can change the tune, open-close radio; adjust radio volume by the menu

that is opened by clicking Radio button. From the menu that is opened when Menu button is

clicked, player may exit the game.

4.7. CAR MARKET MENU DESIGN

 - 23 -

In the game, user will have interaction the environment. For example so as to take a

customer from the road, player must stop the taxi in a suitable area in front of the player. With

the same logic, for entering car market, player must stop the taxi in the indicated area in front

of the car market. Thus first user must go to the car market, and then park the car to a suitable

place, and then this menu will appear.

By the help of this menu, user can sell his/her car to the server (not to a real person yet,

this is an exciting requirement) by clicking “Sell Car” button. When sold, cost of the car will

be added to cash of the player.

User can buy a new car, but a user is not allowed to have two cars (this is also an exciting

requirement). So, if user has a car first s/he must sell it. When doesn’t have a car, user can buy

a new car by first selecting the car that s/he wants. If cost of the car is less than the cash of the

player, s/he will be able to buy this car. By clicking “Buy Car” button, user will own the

selected car. This menu shows the properties of the car; acceleration, top speed, breaking,

handling, fuel consumed per km, type of fuel that car uses. Also picture of the car, name and

production year of the car is displayed on this menu.

4.8. BUY FUEL MENU DESIGN

When user enters to a filling station and park the taxi to the pre-indicated place, this

menu will appear. User will enter the amount of fuel that s/he wants to buy, then click “Buy”

button.

5. INFRUSTRUCTURE

5.1. DELTA3D
Delta3D is a full-function game engine appropriate for a wide variety of modeling &

simulation applications (training, education, visualizations, and entertainment).

The Delta3D Engine

Delta3D is an Open Source engine which can be used for games, simulations, or other

graphical applications. Its modular design integrates other well-known Open Source projects

such as Open Scene Graph, Open Dynamics Engine, Character Animation Library, and

OpenAL. Rather than bury the underlying modules, Delta3D just integrates them together in

an easy-to-use API -- always allowing access to the important underlying components. This

provides a high-level API while still allowing the end user the optional, low-level

functionality. Delta3D renders using OpenGL and imports a whole list of diverse file formats

(.flt, .3ds, .obj, etc.).

 - 24 -

Supported Platforms

Currently, Delta3D is developed and tested on Windows XP using Microsoft Visual

Studio .NET (7.1) and Fedora Core 4 using gcc 4.0.0. All the underlying dependencies are

cross-platform as well, so just about any platform should be compatible with some

modifications to the source (only Win32 and Linux are supported at the moment).

Key Features of the Delta3D Game Engine

 High level C++ API with Python bindings
 STAGE: A powerful editor for building 3D worlds and scripting sequences.
 Supported on Windows XP and Linux.

 Particle systems

 3D audio rendering
 Supports numerous standard 3D file formats (.3ds, .flt, .osg, .obj, etc.)

 Game-style client/server networking

 Extensible terrain architecture
 Terrain generation directly from source DTED

 Tool suite: STAGE, Particle System Editor, 3D Model Viewer

 3D content exporters for Max 7, Maya 6, and Blender 2.37

5.2. CAL3D
 Cal3D is a skeletal based 3D character animation library written in C++ in a way that

is both platform-independent and graphics API-independent. Cal3D's essentials can be

divided into 2 parts: the C++ library and the exporter. The exporter is what we would use to

take our characters (built in a 3D modeling package) and create the Cal3D-format files that

the library knows how to load.

 The exporters are actually plug-ins for 3D modeling packages. This allows 3D artists

to use the modeling tools that they're already comfortable with. The C++ library is what we

would actually use in our application, whether it's a game or a VR application. The library

provides methods to load our exported files, build characters, run animations, and access the

data necessary to render them with 3D graphics.

 Cal3D doesn't do graphics, so we are responsible for making a bridge between Cal3D

and whatever graphics API we want to use. This includes things like loading textures,

handling materials, and rendering the models to the screen. Making a decent character will

require the use of a modeling package like 3D Studio MAX. Since we are thinking to use 3D

MAX, if we use animation in our game -i,e for pedestrian- we will possibly use this library.

Delta 3D has also some animation libraries but Cal3D make animations more effectively.

5.3. OPEN DYNAMICS ENGINE
ODE is an open source, high performance library for simulating rigid body dynamics.

It is fully featured, stable, mature and platform independent with an easy to use C/C++ API. It

has advanced joint types and integrated collision detection with friction. ODE is useful for

simulating vehicles, objects in virtual reality environments and virtual creatures. It is currently

used in many computer games, 3D authoring tools and simulation tools. So we are going to

use this engine for instance our car physics. Basic features of ODE include :

 World

 Gravity and time integration

 Can be on its own thread

 - 25 -

 Space
 Optimizing collision detection

 Body
 Physical object

 Size, mass and position

 Geometry

 Collision detection

 Rendering

 There are 6 types of geometries: Sphere, box, cylinder, ray, triangle mesh, and user

defined. For our car, body is a box for example.

5.4. OPENAL
Audio features in games are indispensable. It takes users at the center of it.Therefore

the attractiveness of the game depends on the realism of the environment and the flow of

action. Sound effects are one of the major features that affect the realism of the atmosphere.

Besides, playing music during the game increases the entertaining factor. For this purpose the

software must be able to play audio files.

Furthermore, playing videos during the game not only provides realism but also helps

attracting the players to the flow of the story. As a design issue, we are going to implement a

multimedia module that answers these needs. The module consists of a static class which

stores and manages the audio files or video file that is played. We will define methods to play

menu music (played only in menus), background music (played during the game-play), and

play various sound effects (sounds that are caused by the elements in the game - car, objects

and collisions).

For these capabilities we will make use of free libraries such as DevLib and OpenAL

to handle these issues easily and efficiently. OpenAL is a cross-platform 3D audio API

appropriate for use with gaming applications and many other types of audio applications. The

library models a collection of audio sources moving in a 3D space that are heard by a single

listener somewhere in that space. The basic OpenAL objects are:

 a Listener
 a Source
 a Buffer

There can be a large number of Buffers, which contain audio data. Each buffer can be

attached to one or more Sources, which represent points in 3D space which are emitting

audio. There is always one Listener object (per audio context), which represents the position

where the sources are heard -- rendering is done from the perspective of the Listener.

On the other DevLib is a relatively new but much more talented library which also

provides classes for playing both music files and video files. Basically DevLib is an object-

oriented framework written in C++. The main advantages of using DevLib is that it provides

user friendly abstraction of heavily used resources such as fonts, images, 3D meshes, files,

xml, zip-archives, sounds, videos. DevLib library itself makes use of DevIL, FreeType 2,

LUA, ODE, libjpeg, libmpeg2, libpng, TinyXML, unzip, ZLib, SDL, DirectX 9, FMOD,

GLEW and STL libraries to fulfill its requirements. One may save/load images, export

meshes from LightWave, 3D Studio MAX and Maya, play sound files, show videos, execute

LUA scripts and manage consoles which allow updating the value of user-specified keys at

run-time. DevLib supports OpenGL and DIRECTX as render system, PNG, JPG, BMP, TGA

 - 26 -

file extensions in image management DevLib is fully compatible with Microsoft's Visual C++

2003.

5.5. ARTIFICIAL INTELLIGENCE ENGINE
 As computer games develop, the demand for more sophisticated computer controls

increases. At this point AI gains more importance day by day. In an artificial intelligence

engine there should be some requirements. An effective artificial intelligence engine should

support agents that are:

 Reactive
 Context Specific
 Flexible
 Realistic
 Easy to Develop

 Reactive agents are methods that compute just one next action in every instant based

on the current context. Context specific agents ensure that their actions are consistent with

past sensor information and the agent’s past actions. Flexible agents have a choice of high

level tactics with which to achieve current goals and a choice of lower level behaviors with

which to implement current tactics. Realistic agents behave like humans. More specifically,

they have the same strengths has human players as well as the same weaknesses. Finally, an

artificial intelligence engine can make agent development easier by using a knowledge

representation that is easy to program and by reusing knowledge as much as possible. Our

game will also provide some AI features. For example in the streets there will be cars and

pedestrians that are produced by server. There are some artificial intelligence engines but

Delta3D also has a library called dtAI which provides this capability.

5.6. NETWORK

In a head-to-head death match multiplayer game, players form ad-hoc and short-lived

sessions. Any client can be selected as a server and the speed is much higher than an online

game. There is no persistent state in these games.

 However in a MMOG there must be a server other than the clients computers and

connection should be persistent. So the infrastructure in server should be handled in a good

way.

Since we are going to implement a MMOG, we will consider 3 main things while

developing our game in terms of networking such as: Timing, Identification and Determinism.

 Timing:

We need to be able to synchronize time to be able to identify when things happen in

the game and when messages arrive. The most complex timing problem is a real-time

system, for obvious reasons.

 Identification:
Identification is being able to direct the correct data to the correct area in our game.

We do not need to worry about routing with most networking implementations, but we

need to come up with a way to uniquely identify each machine and have all other

connected machines aware of that identification and "who they're talking to". We also

need in-game identification to make sure we're sending info to/from the right objects.

 Determinism:

Determinism is the predictability of our game. We only need to send as much info

across the network as we need to ensure matching game states across the board. So game

 - 27 -

will only require small amounts of information (ie: the exact choices the user made,

because these are the only points that difference can exist in the system).

We are going to implement a multi-threaded server with (possibly) UDP network

protocol as our game can be regarded as a real-time system. Delta3D also supports and use

some network libraries, but it supports only 256 players concurrently. So we will implement

our own network infrastructure using C++ socket programming in order to supply players

more than 256. Our server will be the heart of the game. It will keep track of all the objects,

players, events and ensure that each client gets the information it needs, as well as processing

incoming data from the clients.

5.7. DATABASE CONCEPT
 Online games must be refreshed with new content constantly to keep the game alive

and exciting for the players. The easiest and most convenient method for this is simply

downloading the new content onto the player's computer via the patching process. Since we

are planning to develop an online game, it is a must for us to use a database. For database

there are some choices for us – i.e. MSSQL, MYSQL, ORACLE and etc…

 In our database we will store some data. These data will highly affect our data transfer

rate and game performance. Some data will include:

 User accounts
 User statistics
 Game data

For example regarding to user account we can store user’s name, password, mail

attributes. As to user statistics, we keep users total money, cars features such as model,

damage level. Game data include:

 Terrain features
 Sound effects
 Menu options

 Map, cars, city data

Of course accessing database and retrieving data require cost and decreases the speed.

So some information can be manipulated without storing data in the database. For example

objects that are not changeable can be stored in a file. Since server capacity is restricted, there

will be some restrictions. For example if a user do not participate to game throughout 2

months, his account will be wiped in the database. Once the server is initiated, each user, to

join the virtual world, uses a client to connect to the server by notifying the central database

regarding the user’s login information. If a new user logs in, the central database will register

a new account for the user, otherwise, the user will be checked for authorization. The state

information of each user should be stored on the server, where the user first created his

account.

 MMOGs with a client/server architecture have a single huge “game state” which is

the game world’s data usually held exclusively by the server. This data is extremely important

to the game and to access; changes to the data are strictly monitored by the server software.

 - 28 -

6. DETAILED DESIGN

6.1. OVERALL GAME STRUCTURE

Figure 6.1.1 – The Game Manager

Since we will use Delta3D game engine to develop our game, it is important to

introduce how a game is logically implemented by Delta3D. The above figure generally

illustrates the architecture of the game engine. Let’s explain the details of the figure.

The Game Manager
The first thing to notice is that the Game Manager owns all the Game Actors, normal

Actors, Components and Messages. Specifically, it manages the existence and interaction

between all the actors and components in your world. It is the heart of your application.

Delta3D gives you almost all the pieces you need including: scene management,

physics (not so much), audio abilities (OpenAL), the ability to load objects, environmental

effects, lighting, terrain support, cameras and character animation.

Now you have all the pieces you have (except networking which we will handle

because our game will be massive!), the biggest problem here is that how we are going to put

it all together to make our game running. How do we hold onto the list of all objects in the

game?And, how do we manage communication between objects? How does our new car get

into the world so the player can pick it up? How do we understand and send messages about a

crash? And, how do we inform players about each other? These hows can be longer. And

 - 29 -

there is a lot of stuff to worry about to manage our game. Fortunately the Game Manager

provides the core architecture to make it all happen.

Actor and Game Actor

An Actor is any game object that has properties. An Actor can truly be anything we

can imagine, from flying planes to pulsing lights to containers to trees. Actors are the

specialized objects that help define our game.

A Game Actor is an Actor that is designed to work directly with the Game Manager.

The difference between a Game Actor and a regular actor or “non-game” actors is that the

latter is basically static objects in the gane world. We might use it for static meshes like

houses, non-moving lights, trees and may be terrain. The Game Actors are what bring life to

our game. Game Actors get ticked, can process Game Messages, and can generally interact

with the world!

The only way that a Game Actor or actor communicate with Game Manager is Game

Actor Proxy. Here, we need to define what a proxy is. An ActorProxy is a wrapper for an

Actor. Proxies are simple, data oriented classes that have two main jobs. First, they provide a

common, uniform class that the editor understands. Second, they know everything about the

Actor they wrap, especially the properties. Since the Actor classes can be anything, the editor

must be protected from the internal workings of any one object. To make this happen each

Actor must have a corresponding Proxy class that allows access to the internal properties. In

essence, the ActorProxy is a conduit for actors to communicate their behavior to external

applications or to ensure a consistent communications protocol among actors.

Figure 6.1.2- Game Actor and Game Actor Proxy

Messages and Actors and Components

To manage our game, the GM does three main things. The first, and most important, is

the managing of messages: more precisely, Game Messages. Game Messages are what we are

going to use to communicate between Actors, Components, and the GM. Messages can be

used to communicate just about anything: updates to the player’s vehicle; the event for

becoming a member of a cabstand; the fact that a player just entered the world (or leave) etc.

Messages communicate all the behavior and state changes within the system, but messages

don’t send themselves. The GM does that – it receives and routes messages to and from actors

and components.

The second job of the GM is to hold onto ALL actors within the system. This includes

both regular actors and the new GameActor . It tracks actors that we have created in code or

in our map . The GM tells actors to process messages, makes sure they get in and out of the

scene at the right times, and even tells them to ‘tick’ so they can do stuff.

The third job of the GM is to support GMComponents. What’s a component? A component is

basically a high-level object that works with Game Messages. Game Actors do process

messages; however, you will often have lots of instances of a particular actor in the game.

Components are typically much higher level. They do things like networking behavior, game

rules enforcement, logging. Whereas game actors only receive specific messages they are

interested in, GM Components receive all messages.

 - 30 -

What is a Game Manager Component?

In its simplest form, a GMComponent is an object managed by the Game Manager

which can process and send messages. Unlike GameActors, GMComponents receive every

message in the system. Components typically provide high-level system wide behaviors, but

they can do pretty much anything you want. GM Components are the primary way to add

custom behavior to the Game Manager.

Since components get all messages in the system, they have the opportunity to know

about all actors and everything that happens! You can build simple components that wait for

specific messages or listen for the keyboard/mouse. You can have complex components that

hold onto large lists of actors and use hierarchies of helper objects. Components are the

extendable architecture for adding important behaviors to your game.

What is a Game Message?

Game messages are simply the way actors and components communicate with each

other. Messages are typically used for sending data (ex: property changes) or behavior

(requests or commands). The following diagram shows a high level overview of the flow of

messages to/from Game Actors, the Game Manager, and Game Manager Components.

Firgure 6.1.3-Game Message Diagram

There are a few basic methods here:

1. SendMessage() on GameManager

2. SendNetworkMessage() on GameManager

3. Invokables on GameActorProxy

4. ProcessMessage on GMComponent

5. DispatchNetworkMessage on GMComponent

The Game Manager has two primary mechanisms for handling messages: SendMessage()

and SendNetworkMessage(). Hopefully, these are mostly straightforward. To send a message

from anywhere in your game, you call SendMessage() on the GameManager. To send a

message that you want to go out over the network, you call SendNetworkMessage() on the

GameManager. Typically, you want to call SendMessage(). Only a few components should

concern themselves with the network version.

The Components also have two methods: ProcessMessage() and

DispatchNetworkMessage(). Components receive all messages. So, you override

ProcessMessage() to receive normal messages. Then, if you are some sort of network

 - 31 -

component, you override DispatchNetworkMessage() to receive messages that are ready to be

sent over the network. Typically the RulesComponent is responsible for taking normal

messages and resending them as network messages.

For actors it is a little different. Actors never receive network messages, they only get

normal messages. Since there are often LOTS of actors in the system, we don’t want to send

all messages to all actors. Instead, actors register to receive certain types of messages by using

Invokables. There are three default invokables on GameActor: TickLocal(), TickRemote(),

and ProcessMessage(). TickLocal() is registered to take messages from local componenets

and actors. TickRemote() is registered to be informed from other online clients. And

ProcessMessage() is used to process the messages.

About our game
Since we have tried to describe the Game Manager and the logic behind it, it is time to

embed our game objects, data models, message types and etc.to this structure. The first thing

to do is defining our actors. The most important actor is the players’ vehicles. It is the most

dynamic object in the game world. So it would be defined as a Game Actor. And all the other

dynamic objects such as traffic, customer, walking humans on the streets, flying planes, birds

and etc. should be defined as Game Actors too. A detailed class diagrams will be supplied in

the following sections. Then we should define our environment-mainly static objects that will

not move or change during the game such as buildings, trees, lamps, some type of lights,

garbage containers. So they should be regular actors. Then the components including user

input, may be logging, and also networking have to be considered here. The user input is

handled in this component. The network component gets and sends data packages in this part

also. In our messages component there will be message types and the related event names

such as EnteredWorld()-EventName(“EnterWorld”), StopCar()-Event(“StopCar”),

GetCustomer(“GetCustomer”), ActorUpdated(“Update”) and etc. These messages are sent

through the actors and components and also through the network to make the required change

by triggering related events. For example, when a new packet is come to the component, it

passes the message to Game Manager via a proxy. The Game Manager then delivers this

message to both all componenets and to all game actors that has already been registered to

take this type of message. The registration is important to make the messaging traffic less.

Then the message is processed by the taken components and the required update is applied.

Although we have not show in the Game Manager figure above, physics,sound and

AI is also a part in the Game Manager. It controls all of them but we have to develop the parts

and have to adapt to our game. We have to deal with physics engine to define a good and

realistic car physics and deal with sound engine for both car sounds and other environmental

and background or menu musics. And also we have to consider AI for the traffic, customer,

walking humans and etc. and implement them efficiently. The detailed design of how we

design our classes by using the existing ones in Delta3D is shown in the following sections

more clearly.

 - 32 -

6.2 NETWORK STRUCTURE

Network Manager

ConnectionIterator:map<string , Connection>::iterator

IsServer:bool=false

Connections:map<string , Connection*>

InitializeGame():void

SetupServer():bool

SetupClient():bool

Shutdown():void

SendPacket(string address , Packet packet):void

IsServer():bool

IsClient():bool

OnDisconnect():virtual void

OnExit(Connection conn):virtual void

OnNewConn(Connection conn):virtual void)

OnConnect(Connection conn):virtual void

OnReceive(Connection conn):virtual void

OnError(Conenction conn, Error err):virtual void

AddConnection(Connection *conn):void

RemoveConnection(Connection *conn):void

Packet

ID:int=0

timestamp:string

Packet(int id=0):void

getType():const int

getSize():int

writePacket(Buffer &raw):virtual void

readPacket(Buffer &raw):virtual void

operator=(const Packet&):Packet&

Connection

sockets:SocketPairs

ps:PacketStream

getTimeout():int

setTimeout():int

stream():PacketStream&

getLocalAddress():Address

getRemoteAddress():Address

getState():State

isConnected():bool

disconnect():void

addHeader(Buffer &raw):void

onReceive():void

 - 33 -

The network manager is a class to control the network and connections. It can be used

for both client and server by calling the SetupClient() and SetupServer() respectively. In the

server side, all the active connections are hold in a map with a host address and a connection

pointer. And also there is a connection iterator in the server side which is useful to iterate over

all connections. And isServer is a boolean attribute simply to indicate whether it is a server or

not. The network managers work together with game manager. Shutdown() closes the

network manager and also all the connections. OnExit, OnNewConn,OnReceive and OnError

are events that is triggered when a remote connection disconnected successfully, a new

connection is setup, a packet is received from that connection and an error occurred in

connection respectively. SendPacket() sends the specified packet to the given host. And a

network manager can add or remove connections by AddConection() and

RemoveConnection() members.

The packet class constructs the base class for our datas that will be sent through the

network. It has an id to define the type of the packet between the registered packet types. Id is

unique to each type of packet. Timestamp attribute is required to order the received packets.

Because in UDP protocol it is not guaranteed that the packets will arrive in order with it is

sended. So, for example for a position packet we have to update the car position only if the

received packet’s timestamp is newer than the last packet that has updated the position.

getSize() function returns the size of the packet in terms of number of the bytes it has.

writePacket() writes the current packet to buffer to be sent and readPacket() reads the data that

is currently on the buffer to this packet. Operator= is just to make the copying of packets

easier.

The connection class is used to define and open a connection between client and

server. It has methods just used to setup a connection and change or get the variables. The

SocketPair is also a class handling the sockets to be listened and to be sended data over.

SetTimeout() and getTimeout() sets and gets the timeout for that connection. getState()

returns the state of the conenction indicating whether it is ReadyToConnect, Connecting,

Connected, Disconnecting, Disconnected. Disconnect() closes the connection. onReceive() is

a registered event that is triggered when there a packet is read from that connection.

Some of our packets:

This type packet is used to refresh the all

players positions in the scene and need to be

sended in every frame for an UDP protocol. ID is

the packet type which is a static object that is

created when the class is constructed. xyz is the

position vector and hpr is the rotation vector of

the car in three directions having owner whose id

is ownerID.

PositionPacket:Packet

xyz:osg::Vec3

hpr:osg::Vec3

ownerID:const &string

ID:static const int

PositionPacket():void

~PositionPacket():virtual void

getSize():virtual void

writePacket(Buffer &raw):virtual void

readPacket(Buffer &raw):virtual void

 - 34 -

 We use this type of packet to understand

that a player has quitted game. So we have to

remove this player in all clients screen. The only

thing we should send is the playerid. So we can

search through the actors and remove it from the

scene.

 This packet is used to inform every

client that a new user has logged in, so create a

user in your user map. Actually we donot a

position packet with this packet. Because

immediately after creating the user, the position

packet will be sent to participant clients.

 This is the chat packet. When user enters

the message on the screen and press enter, his

messahe is sent to all clients. Nick is the

nickname of the player that is shown on the

ckhat screen and other menus, message is the

entered message, and id shows the owner of the

message

PlayerQuitPacket:Packet

ownerID:const &string

ID:static const int

PlayerQuitPacket():void

~PlayerQuitPacket():virtual void

getSize():virtual void

writePacket(Buffer &raw):virtual void

readPacket(Buffer &raw):virtual void

PlayerMessagePacket:Packet

nick:string

message:string

ownerID:const &string

ID:static const int

PositionPacket():void

~PositionPacket():virtual void

getSize():virtual void

writePacket(Buffer &raw):virtual void

readPacket(Buffer &raw):virtual void

NewPlayerPacket:Packet

ownerID:const &string

ID:static const int

NewPlayertPacket():void

~NewPlayerPacket():virtual void

getSize():virtual void

writePacket(Buffer &raw):virtual void

readPacket(Buffer &raw):virtual void

 - 35 -

CreateTrafficVehiclePacket:Packet

type:integer

ID:static const int

trafficID:int

CreateTrafficVehiclePacket():void

~CreateTrafficVehiclePacket():virtual void

getSize():virtual void

writePacket(Buffer &raw):virtual void

readPacket(Buffer &raw):virtual void

DestroyTrafficVehiclePacket:Packet

ID:static const int

trafficID:int

DestroyTrafficVehiclePacket():void

~DestroyTrafficVehiclePacket():virtual void

getSize():virtual void

writePacket(Buffer &raw):virtual void

readPacket(Buffer &raw):virtual void

 These three packets are created to

generate the traffic on the roads. Type is an

integer value indicating whether the vehicle is

a car, a bicyle, a truck etc. trafficId is unique to

identify that vehicle. PositionPacket and

Destroy packets are same as the player’s

except it uses trafficID to identify the car other

than ownerID.

DestroyCustomerPacket:Packet

ID:static const int

customerID:int

DestroyCustomerPacket():void

~DestroyCustomerPacket():virtual void

getSize():virtual void

writePacket(Buffer &raw):virtual void

readPacket(Buffer &raw):virtual void

 Since the customers should be

automatically generated by server in order to

be seen same by every player, the customer

creation, deletion and position packets have to

be sent periodically. By CreateCustomerPacket

we create a customer having a type such as

man, child, woman, girl,etc. and having id

TrafficVehiclePositionPacket:Packet

xyz:osg::vec3

hrs:osg:vec3

ID:static const int

trafficID:int

TrafficVehiclePositionPacket():void

~TrafficVehiclePositionPacket():virtual void

getSize():virtual void

writePacket(Buffer &raw):virtual void

readPacket(Buffer &raw):virtual void

CreateCustomerPacket:Packet

type:integer

ID:static const int

customerID:int

CreateCustomerPacket():void

~Create:CustomerPacket():virtual void

getSize():virtual void

writePacket(Buffer &raw):virtual void

readPacket(Buffer &raw):virtual void

CustomerPositionPacket:Packet

xyz:osg::vec3

hrs:osg:vec3

ID:static const int

customerID:int

CustomerPositionPacket():void

~CustomerePositionPacket():virtual void

getSize():virtual void

writePacket(Buffer &raw):virtual void

readPacket(Buffer &raw):virtual void

 - 36 -

customerID. The deletion and positoon is similar to above packets.

6.3 PHYSICS ENGINE

 The dtCore:Physical class demonstrates the Delta3D’s physics engine which we

will use in our game to handle mainly collisions and other physical events. Since all objects in

the scene is inherited from this class, we can enable physics of every element.The main

method here is the EnableDynamics() method. It enables or disables dynamics for the

object.SetMass() and GetMass() sets and gets the object’s mass. BodyId is the ODE body

identifier associated with this object. Centerofgravity is the gravity center of the object.

PostPhysicsStateUpdate() updates the state of the object just after a physical simulation

step.SetMass(const dMass*) sets the ODE mass parameters of the object.

 We have written only the Physical related methods of the Scene class of dtCore.

With AddDrawable and RemoveDrawable we can decide which objects we want to render.

The gravity determines the hravity of the scene. OnMessage() performs collision detection

and update physics. An object can be registered and unregistered as physical to scene. And we

can also add collidable objects to scene. The engine will only find the collision with the

registered collidable physical objects.

dtCore::Physical

attribute:Type = initialValue

inertiatensor:osg:Matrix

centerofgravity:osg:Vec3

mass:float

isDynamicsEnabled:bool

dBodyID:int

SetBodyID(dBodyID) : void

GetBodyID(void) : dBodyID

EnableDynamics(bool) : void

DynamicsEnabled(void) : bool

SetMass(const dMass *) : void

GetMass(dMass *) : void

SetMass(float) : void

GetMass(void) : float

SetCenterOfGravity(const osg::Vec3 &) : void

GetCenterOfGravity(osg::Vec3 &) : void

SetInertiaTensor(const osg::Matrix &) : void

GetInertiaTensor(osg::Matrix &) : void

PostPhysicsStepUpdate(void) : virtual void

FilterContact(dContact *, Transformable *) : virtual bool

dtCore::Scene

x : float

y : float

z : float

vec : osg::Vec3

gravity : osg::Vec3

data : MessageData *

stepSize:double

AddDrawable(dtCore::DeltaDrawable *) : void

RemoveDrawable(dtCore::DeltaDrawable *) : void

RemoveAllDrawables(void) : void

SetGravity(const osg::Vec3 &) : void

SetGravity(float, float, float) : void

GetGravity(float *,float *,float *) : void

GetGravity(osg::Vec3 &) : void

OnMessage(MessageData *) : virtual void

SetUserCollisionCallback(dNearCallback *func , void *data=0):void

GetPhysicsStepSize():double

SetPhysicsStepSice(double stepSize=0):void

RegisterPhysical(Physical *physical):void

RegisterCollidable(Transformable *collidable):void

UnRegisterPhysical(Physical *physical):void

UnRegisterCollidable(Transformable *collidable):void

 - 37 -

6.4 PLAYER RELATED STRUCTURES

Car::GameActor

carID : unsigned int
brand : string

model : string
year : unsigned int

price : unsigned int

damage : unsigned int
position : osg::Vec3

angle : osg::Vec3
velocity : unsigned int

gear : unsigned int
existingFuel : unsigned int

owner : unsigned int
fuelType : unsigned int

fuleConsumingRate : unsigned int
acceleration : unsigned int

topSpeed : unsigned int

breaking : unsigned int
handling : unsigned int

setDamage(unsigned int):void
getDamage(void):unsigned int

Player::GameActor

username : string
password : string

career : unsigned int
drivingLicense : unsigned int

existingMoney : unsigned int

car : Car
cabstand : unsigned int

lastLogin : struct date

setDrivingLicence(unsigned int):void

getDrivingLicence(void):unsigned int

changePassword(string old,string new,string confirm):void

1 1

 Player and Car classes are inherited from the GameActor class of the Delta3D.

GameActor class is designed for non-static objects on the game. GameActor objects are

directed by the game manager.

 Player class is used for holding the data and actions of the player. Since the player will

have one car, for every Player object there will be a Car object if the player has bought a car.

Since attribute names are generally self descriptive, there is no need to explain each

one explicitly. Career attribute keeps the career point of the player, which is an integer value

between 0 and 100. drivingLicense field keeps the driving license point of the player which is

also between 0/100. car attribute is an object of Car class, which holds properties of the car

for the player, and which holds needed functions to manipulate a car. Cabstand field holds the

id of the cabstand that the player is a member of. If player is not a member of any cabstand,

this field will have value 0.

Player class has ordinary set and get functions for the attributes that it has, which are

not written on the diagram so as not to repeat the info. In addition to set/get methods, there

exists a changePassword method, which changes the password with making confirmation test.

Car class is designed for manipulating car of the player, namely the taxi. Each car

object has a unique carID. Damage ratio of the car is determined by the damage field, which

has integer values between 0-100. 0 indicates no damage and as damage increases, integer

value increases up to 100. Position and angle of the car is kept at related fields as Vec3

objects which is inherited from osg class. Vec3 class has 3 fields, keeping x, y, z values for

position and alpha, beta, gamma values for angle attributes. fuelType attribute keeps integer

value which are constants defined for indicating the type of the fuel that the car is consuming,

namely super fuel, normal fuel, diesel, or LPG. Properties that are unique to car models such

as fuel consuming rate, acceleration, breaking, handling, and top speed are also kept in Car

class.

Car class has standard set/get functions for needed attributes, which are not shown on

the diagram so as not to repeat info.

 - 38 -

6.5 ENVIRONMENT RELATED STRUCTURES

Human::GameActor

humanModel : unsigned int

position : osg::Vec3

angle : osg::Vec3

velocity : unsigned int

setPosition(unsigned int):void

getPosition(void):unsigned int

Customer::GameActor

humanModel : unsigned int

class : unsigned int

position : osg::Vec3

angle : osg::Vec3

destination : map::address

satisfaction : unsigned int

setSatisfaction(unsigned int):void

getSatisfaction(void):unsigned int

Vehicle::GameActor

vehicleType : unsigned int

carID : unsigned int

position : osg::Vec3

angle : osg::Vec3

velocity: unsigned int

setPosition(osg::Vec3) : void

getPosition(void) : osg::Vec3

StaticObject::GameMeshActor

objectType : unsigned int

position : osg::Vec3

angle : osg::Vec3

setPosition(osg::Vec3) : void

getPosition(void) : osg::Vec3

GAME

MANAGER

dtTerrain::Terrain

dtCore::SkyDome

Classes defined above are used for the objects that are at the environment and

manipulated by either CPU or remote player, not by the player.

StaticObject class is designed for manipulating the static objects in the environment,

with which player doesn’t have any interaction. Namely these are trees, buildings, traffic

signs, traffic jams, public gardens and etc. Type of the object is hold at objectType field,

which are defined explicitly with constant ids. As usual, this class has set/get methods for

position and angle attributes.

Human class is designed for manipulating the people in the environment. Human

objects will be of several types, for example an old lady, a business man, a boy, a girl, a

woman etc. This types will be kept at humanModel attribute. Human models will be able to

move in the environment, with character animation. Character will have velocity, which will

have three main degrees, stopping in which velocity is equal to zero, walking in which

velocity will be 3 and running in which velocity will take value 6. Angle and position values

are kept and changed from related fields as it is done in StaticObject class.

Vehicle class is designed for the cars that are in the environment. These cars may be

the city traffic or the taxies that are being driven by other players. If the vehicle is the car of a

remote player, vehicleType attribute will be set to 0 and carID field will keep the car id of that

player, thus make it possible to take the needed information about the car, namely its model,

 - 39 -

brand etc. If the vehicle is not controlled by a remote player, namely if it is a member of city

traffic, vehicleType field will keep the type of that object and carID field will be NULL. For

traffic there will be a few different type of automobiles, a truck model, and a bus model,

which will be enough for our project.

Customer class is designed for manipulating the customers that will be served by the

taxi. This class also has a humanModel field as it is in Human class. Additionally this class

has a class field which indicates the class of the customer, namely a rich person will not want

to get on an old or unqualified taxi, near that a rich person will give extra money to a taxi

driver if s/he is satisfied from the travel. Satisfaction data is kept on satisfaction attribute.

Also destination field keeps the address of the destination point in address type that is defined

in map class. Since customer will wait fro the taxi, it will not have any movement, so velocity

field is dropped. As it had been in other classes this class also has set/get methods which are

not stated explicitly.

We will use SkyDome class from the Delta3D’s dtCore library. This class makes it

possible to generate a sky dome by adding it to environment and setting the time of the day.

Lighting is adjusted according to this virtual time stamp. Also it is possible to generate

moving clouds on the sky by the help of this class.

Terrain class from dtTerrain library of Delta3D will be used for generating the terrain.

This class makes it possible to load a terrain to the environment with giving the frequency of

hills. There exists a special program STAGE that comes with Delta3D package, with which it

is possible to generate environment and adjust the terrain. We will also use this program for

generating our environment.

 - 40 -

6.6 CAMERA RELATED STRUCTURES

dtCore::Tripod

x : float

y : float

z : float

h : float

p : float

r : float

xyz : osg::Vec3

hpr : osg::Vec3

camera : dtCore::Camera *

target : dtCore::Transformable *

SerCamera(dtCore::Camera *) : void

GetCamera(void) : dtCore::Camera *

SetOffset(float,float,float,float,float,float) : void

GetOffset(osg::Vec3 &,osg::Vec3 &)

SetScale(float,float,float,float,float,float) : void

GetScale(osg::Vec3 &,osg::Vec3 &)

SetLookAtTarget(dtCore::Transformable *) : void

GetLookAtTarget(void) : dtCore::Transformable *

dtCore::Camera

hfov : double

vfov : double

left : double

right : double

bottom : double

up : double

nearClip : double

farClip : double

scene : dtCore::Scene

enabled : bool

SerEnabled(bool) : void

GetEnabled(void) : bool

TakeScreenShot(const string &) : const string

Frame(bool) : void

SetScene(dtCore::Scene *) : void

GetScene(void) : dtCore::Scene *

GetCamera(void) : Producer::Camera *

SetPerspective(double,double,double,double) : void

SetFrustum(double,double,double,double,double,double) :

void

SetOrtho(double,double,double,double,double,double) : void

1

1

dtCore::Scene

x : float

y : float

z : float

vec : osg::Vec3

gravity : osg::Vec3

data : MessageData *

AddDrawable(dtCore::DeltaDrawable *) : void

RemoveDrawable(dtCore::DeltaDrawable *) : void

RemoveAllDrawables(void) : void

SetGravity(const osg::Vec3 &) : void

SetGravity(float, float, float) : void

GetGravity(float *,float *,float *) : void

GetGravity(osg::Vec3 &) : void

OnMessage(MessageData *) : virtual void

n 1

 We will use Scene class as the main class for all objects that we want to draw in the

scene. For making an object drawn to scene, after defining a scene, we need to add the object

to the scene as drawable. This is achieved by calling AddDrawable function. With same logic,

object can be removed from the scene by RemoveDrawable and RemoveAllDrawables

functions. Gravity can be set and predefined gravity value can be get by SetGravity and

GetGravity functions. By the help of OnMessage function, we can send message to physical

class which handles collision detections. There are also many other function related to

collision detection in Scene class which are explained in physical engine part of the report.

 - 41 -

 We use camera class so as to define a viewing point to our scene. We can

enable/disable a camera with SetEnable and SetDisable functions. We can take the screen shot

with TakeScreenShot function. Frame function makes screen redraws the screen. SetScene

function sets the scene in which the camera will be used. And GetScene function gets the

value of the scene that the camera has been assigned to. GetCamera function gets a non-const

handle to the underlying Producer::Camera. SetPerspective, SetFrustum and SetOrtho

functions sets the indicated projections to the camera respectively with the given values.

 We use Tripod class for attaching a camera to a transformable such as the taxi. By the

help of this class, we can move the view as the car moves forward. After defining a tripod

object, we can attach a camera to a tripod by SetCamera function. GetCamera function returns

the camera that was previously attached to a tripod. By the help of SetOffset function, we can

set the distance between camera and tripod in x, y and z coordinates. By this way, camera

comes after the car and car is also seen on the screen, which is the case in all car racing

games. GetOffset function returns predefined offset value of a camera with respect to a tripod.

SetScale function sets the per-frame lag for each degree of freedom. GetScale function return

a predefined value. SetLookAtTarget functions makes tripod to point at some target which is

in type Transformable. GetLookTarget function returns the value of the target Transformable

object that is pointed by tripod.

 - 42 -

6.7 MENU STRUCTURE

MSMenuElement

type : MSMenuElmentType
width : Double

height : Double
keyCode : Integer
text : String

selected : Boolean
enabled : Boolean

visible : Boolean
value : Double
fieldIndex : Integer

tabIndex : Integer
mouseOverEvent : Function*

mouseLeaveEvent : Function*
mouseClickEvent : Function*

new() :void

new(MSMenuElmentType) :void
isEnabled() : Boolean

isSelected() : Boolean
isVisible() : Boolean
hasParent() : Boolean

hasItem() : Boolean
getType() : MSMenuElmentType

getKeyCode() : Integer
getKeyChar() : Char
getText() : String

getValue() : Double
getFieldIndex() : Integer
getTabIndex() : Integer

getParent() : MSMenuElement*
getItem(Integer): MSMenuElement*

getItemsCount() : Integer
show() : Void
hide() : Void

setVisible(Boolean) : void
setKeyCode(Integer) : void

setKeyChar(Char) : void
setText(String) : void
setSize(Double,Double) : void

setValue(Double) : void
setFieldIndex(Integer) : void

setTabIndex(Integer) : void
setType(MSMenuElmentType): void
setBackgroundImage(Integer): void

setMouseOverEvent(Function*) : void
setMouseLeaveEvent(Function*): void

setMouseClickEvent(Function*): void

MSMenuItem

parent :MSMenuElement*

<vector>items :MSMenuElement*

new() : void

isCollapse() : Boolean

expand() : Void

collapse() : Void

clearItems() : void

addItem(MSMenuElement*) : void

addItemAt(MSMenuElement*,Integer): void

setParent(MSMenuElement*) : void

 - 43 -

MSMenuElement Methods

 MSMenuElement class is designed for some basic interface elements such

as;MNButton,MNTextBox,MNLabel,MNRadioButton,MNImage.

 This class has some public methods to check kinds of states of an element. Functions

like isEnabled,isSelected,isVisible,hasParent,hasItem checks enability, visibility,selected

or whether it has parent, child or not. MSMenuElmentType of instancecan be get or set by

using getType, setType method. getKeyCode,getKeyChar methods returns key code/char

of instance that is used for rising event on that key pressed and thanks to setKeyCode,

setKeyChar their values can be set. It also can be added some mouse events. Using

setMouseOverEvent we can set MouseOverEvent funtion that triggers when mouse is over

on it. And using setMouseLeaveEvent we can set MouseLeaveEvent funtion that triggers

when mouse leaves it. MouseClickEvent funtion also can be set which triggers when left

mouse is clicked on it. Background image of some elemnets can be set with function

setBackgroundImage.

MSMenuItem Methods

MSMenuItem class is design in order to make it possible construct easy controllable

with high funtionality menu. This class inherited from MSMenuElement so we can easily

use lots of public methods of MSMenuElement. Besides, with this class we can construct

hierarchical menu and we can control it. For example; expand function expands and

colllapse function collapses the menu. New item can be added recursively wihtout depth

limitation and also they can be removed. In addition to control, we can check kid of states

of MSMenuItem like isCollapsed method.

 - 44 -

6.8 SOUND ENGINE

MSSoundEngine

volume : Double

repeat : Boolean

random : Boolean

<Vector> items : MSSound

stopAll() : Void

stopAt(Integer) : Void

pauseAll() : Void

pauseAt(Integer) : Void

resumeAll() : Void

resumeAt(Integer) : Void

playAt(Item) : Void

playNext() : Void

getCurrentMusics() : <Vector> MSSound

setRandom(Boolean) : Void

setVolume(Double) : Void

increaseVolume(Double) : Void

decreaseVolume(Double) : Void

addMSSound(MSSound) : Void

MSSound

musicID : Integer

volume : Double

startAt : Double

status : MSSoundStatus

repeat : Boolean

random : Boolean

musicFinishedEvent : Function*

stop() : Void

pause() : Void

resume() : Void

play() : Void

play(Double) : Void

jumpTo(Double) : Void

getStatus() : Void

setMusic(Integer) : Void

setVolume(Double) : Void

increaseVolume(Double) : Void

decreaseVolume(Double) : Void

setMusicFinishedEvent(Function*) : Void

 - 45 -

MSSound

MSSound class deals with a sound stream. This stream can be music or a sound. We

can control sound stream with methods. These are mainly, play method to play sound

from starting point or any position of sound. SatartAt parameter must be between 0 and

100(it can be thought as percentage). We can pause or stop playing sound and after a

sound stream paused, it can resume. increaseVolume,decreaseVolume functions help us to

control volume of the sound. This class also allow us to add MusicFinishedEvent listener

in order to raise event when sound finished. Using jumpTo function we can jump to any

position of the sound.

MSSoundEngine

MSSoundEngine class is designed to control more than one MSSound at same time.

Although MSSound is a public property,Considering usablity this class includes some

method to control MSSound items without accesing MSSound items. For example;

stopAt, pauseAt, resumeAt, playAt functions can be used instead of items[i].*. And this

class allows to add sound item dynamically using addMSSound. And we can set, increase,

decrease global volume of sound. Real sound is calculated by multiplying local volume

and global volume.

7. ACTIVITY DIAGRAMS

 - 46 -

For training diagram we have 5 activities originated from the starting condition. These

are select training, select online game, select options, select credits and click exit game. Select

options and select credits returns to the initial condition after implementing their activities. On

the other hand, exit game implements exit game and finishes the activities.

Select training and select new online game passes another condition after their

activities. Online game condition is explained in diagram2 part. 6 activities originate from

select training condition. These are; city tour, serve passengers, go filling station, maintain

car, visit car market. After their activities, all these buttons return to the condition from which

they are originated. Click resume button behaves according to a condition. If it creates the

“resume the game” activity, this return to the condition from which the click resume button

activity is originated. Otherwise it returns to the starting point.

 - 47 -

For online game diagram we have 4 activities originated from the starting condition.

These are login, sign up, forgot password and back buttons. Sign up and forgot password

returns to the initial condition after implementing their activities. On the other hand, back

button implements exit and returns to the condition from which it is originated.

Select login passes another condition after verifying that player username and

password are correct. 5 activities originates from online game condition. These are; click

status, click radio, click my car, click map and menu buttons. After their activities, all these

buttons except menu return to the condition from which they are originated. Click menu

button behaves according to a condition. If player logouts, activity returns to the starting

condition. Otherwise it returns to the condition from which the menu button activity is

originated.

8. UML
8.1 SEQUENCE DIAGRAM

 - 48 -

We represented the time-method sequence relationship in this diagram.

 At the beginning, the user must login the system, so user enter his username and

password. At this stage user object sends login() method to server for verifying.

 Server object starts its lifeline when user sends his login info. After connecting
database and verifying user account info, server make connection with the game and

player and maintain it unless user exit the game.

 After confirming user password, server sends display() method to GUI.

 GUI object is related to the Delta3D game engine via openPlayMenu() method.

 Delta 3D engine is core of the system. It provide bridge between player and system.

After user enter the game, engine sends loadData() method to Open Scene Graph

object. This object loads necessary information regarding to game (car models, city

map, textures etc…) and system waits for user to do action.

 If user moves the car system must do corresponding actions. First of all system should

ensure that inputs are available. For this purpose delta engine sends getInput() method

to dtCore class. As a result this class provides necessary functionality.

 After getting input parameters computer must calculate these to move car from one

place to other. At this point delta engine sends calculatePath() method to Open

Dynamics Engine.

 At this point server must provide some future states. So server sends nextState ()

method to AI engine.

 Since visual and audio effects provide entertainment, engine sends renderDisplay ()

and playAudio() methods to Graphics and OpenAL objects.

 System processes these methods iteratively and if user play exit button then GUI sends

exitGame() method to server. Servers send users info to database via saveData()

method call. Then server sends disconnect() method to user.

 - 49 -

 We represented the time-method sequence relationship in this diagram.

 At the beginning, the user must login the system, so user enter his username and

password. At this stage user object sends login() method to server for verifying.

 After confirming user password, server sends display() method to GUI.

 GUI object offers some options to player via openMenu() message to delta3D.

 Delta 3D engine is core of the system. It provide bridge between player and

system.

 If user selects an option system must do corresponding actions. First of all system

should ensure that inputs are available. For this purpose delta engine sends

getInput() method to dtCore class. As a result this class provides necessary

functionality.

 After providing system to get input parameters, GUI provides some options to user

(menu)

 - 50 -

 User then choose action training and GUI opens another screen via trainingMenu

function call to delta3D.

 User can then send repairCar() message to the MNCar object. This object gives

some parameters to the MNCar constructor and returnsto the user

 System processes these methods iteratively and if user play exit button then GUI

sends exitGame() method to server. Servers send users info to database via

saveData() method call. Then server sends disconnect() method to user.

 We represented the time-method sequence relationship in this diagram.

 At the beginning, the user must login the system, so user enter his username and

password. At this stage user object sends login() method to server for verifying.

 After confirming user password, server sends display() method to GUI.

 GUI object offers some options to player via openMenu() message to delta3D.

 GUI instantiate MNPlayer object via constructor call to MNPlayer Object.

 User then selects the Options menu and GUI sends optionsMenu() message to

delta3D.

 User then choose Audio() and CarRadio() options and delta3D object sends
setRadio() and playAudio() messages to OpenAL object.

 System processes these methods iteratively and if user play exit button then GUI

sends exitGame() method to server. Servers send users info to database via

saveData() method call. Then server sends disconnect() method to user.

 - 51 -

8.2 COLLABORATION DIAGRAM

 - 52 -

The relationships of the classes are as below:

User Class:

 Server via login() and disconnect()

Server Class:

 Database via confirmUser() and saveData()

 GUI via display() and exitGame()

GUI Class:

 Delta 3D engine via openPlayMenu()

Delta 3D Engine Class

 Open Scene Graph via loadData()
 dtCore via getInput()
 Open Dynamics Engine via calculatePath()

 AI engine via nextState()
 Graphics via render()
 OpenAL via playAudio()

 - 53 -

8.3 DATA FLOW DIAGRAM
In this section, the system is represented with a Data Flow Diagram (DFD), which depicts

information flow and the transforms that are applied as data move from input to output. Input

resources to the system are mainly the keyboard, mouse, texture, models, images, audio are

main. Outputs of the system are mainly graphic, sound.

8.3.1 DFD Level 0

 - 54 -

8.3.2 DFD Level 1

The system is composed of six sub modules and the data flows among them.

Input Controller is responsible to invoke suitable events according to keyboard mouse

inputs

Load/Save module manages the load/save operations. It is also responsible for loading

a new map. To do these, it reads information from database or from files to the Game Engine.

On the other hand, it writes the game save data to files and to database.

Graphic Engine manipulates and transmits the visual data that it receives from the

central Game Engine to the monitor.

Sound Generator serves the requests of Game Engine and transmits the sound read

directly from file to the speakers.

 - 55 -

Physical Engine is responsible for detecting the collisions of cars and deciding

movement of car.

Network Engine send information, received from Game Engine in a predefined stream

format, to the server and gets information from server such as; traffic information, saved

game.

8.4 USE CASE DIAGRAM

 - 56 -

Our main aim here is to determine actors and their activities. Use case

diagrams based on there actor group.

Maintenance User can configure the car. By increasing comfort of the car he
attract much customer.

Repair Car Repair damages

Update Car Change parts of car with new ones

Buy Extra
Accessory

Buy extra accessory like coffee machine

Go to Car Market User can go car market to sell his/her car or buy a new car.

Sell Car Sell his/her car

Buy New Car In order to buy a new car, he/she has to sell his/her car.

Serve Passenger User can make money by serving passenger. Money depends
on his/her quality of service.

Join Cabstand User also can join cabstand. In this he/she can make much
money.

 - 57 -

8.5 STATE TRANSITION DIAGRAM

- loading: This is the state when user first run the game. The saved options are loaded

according to the selected username. When loading is completed, this state is directed

to the read user input state.

- reading user input: This is the state in which the main menu is displayed. User can

select the options from menu, then options state becomes active. If the training item is

clicked, the state is changed to the training state. The last thing that user can do in this

state is to connect to server. Then he is directed to the get username and password

state.

- get username and password: When user wants to play online and continues or

starts to a new career, he is firstly asked for the username and password. If he is a new

to the game and has no career, he goes to sign up state and register. If he is already a

member, he enters his info and send server for verification.

- connect to server: This is the state where the user is verified. If the username and

corresponding password are correct, this state is changed to loading career state.

 - 58 -

Otherwise the user is asked again to enter the username and password correctly at get

username and password state.

- loading career: If the user is verified by server, his status which is saved at

database, is loaded with all options. Then immediately the play state comes.

- play game: This is the main state of the game. The user continues his career at this

state. There are transitions to other states in this one.

- reset career: If user wants to reset his career due to some bad conditions, he is

directed to this state. Then he becomes a new user.

- save status: This is the state in which the career status at that time is saved to the

user account in database. While loading the career, the last save is valid.

- back to main menu: To disconnect from server and return to the main menu, this

state is used. Transition to this state is possible either from play game or from save

status states.

- training: This is the exploring game and learning the basics state. After choosing

which part to play, user can play the game in a single player mode.

 - 59 -

9 DATABASE DESIGN

 - 60 -

 - 61 -

 - 62 -

CAREER

Attribute Name Attribute Type Explanation

objectId Int(12) This integer holds the career id of the player

point Int(12) This integer holds the amount of point that player has

Key: objectId

 PLAYER

Attribute

Name

Attribute

Type

Explanation

username Varchar(16) A unique string defined by the user to access the system

password Varchar(16) A string defined by the user to login the system with

the username

jobId Int(12) This integer holds the job_id of the player

careerId Int(12) This integer holds the carreer_id of the player

carId Int(12) This integer holds the car_id of the player

money Int(12) This integer holds the amount of money that player has

currently

drivingLicense Varchar(2) This string holds the type of license of player

lastLogin Datetime This value holds the last date of player login

Key: username

Foreign Key: jobId, careerId,carId

 CAR

Attribute Name Attribute Type Explanation

objectId Int(12) This integer holds the id of car

ownerUserName Varchar(16) This string holds the username of the player

modelId Int(12) This integer holds the model_id of the car

damageId Int(12) This integer holds the damage_id of the car.

modifyId Int(12) This integer holds the modify_id of the car.

year Datetime This value shows the production year of the car

value Int(12) This integer holds the total cost of the car

 - 63 -

Key: objectId

Foreign Key: modelId,damageId,modifyId

 MODEL

Attribute Name Attribute Type Explanation

objectId Int(12) This integer holds the id of car

name Varchar(16) This string holds the name of the car

acceleration Int(4) This integer holds the amount of acceleration of the

car

handling Int(4) This integer holds the amount of handling of the car

topSpeed Int(4) This integer keeps the top speed of the car

Key: objectId

Foreign Key: modelId,damageId,modifyId

 MODIFY

Attribute Name Attribute

Type

Explanation

objectId Int(12) This integer holds the modify id of the car

modifiedPart Varchar(12) This string holds the part on which the change will be

applied

cost Int(12) This integer holds the total amount when there is a

modification

date Datetime This vale holds the date of modification

valueIncRate Currency This value represents the percentage of modification.

Key: objectId,modifiedPart

DAMAGE

Attribute Name Attribute Type Explanation

objectId Int(12) This integer holds the damage id of the car

damageRate Currency This value represents the percentage of damage

damagedPart Varchar(12) This string holds the name of the part of the car.

Key: objectId

 - 64 -

 JOBS

Attribute Name Attribute Type Explanation

objectId Int(12) This integer holds the id of job

name Varchar(16) This string holds the name of the job

location Varchar(16) This string holds the location of the job owner

manager Varchar(16) This string holds the username of the job owner

profitRate Currency This value represents the percentage of profit

Key: objectId

EXTRAJOBS

Attribute Name Attribute Type Explanation

username Varchar(16) This string holds the username of the job owner

jobId Int(12) This integer holds the id of job

share Int(12) This integer holds the total amount share

Key: username,jobId

CABSTAND

Attribute Name Attribute Type Explanation

name Varchar(16) This string holds the name of the cabstand

numberOfMembers Int(12) This integer holds the players member of this

cabstand

location Varchar(16) This string holds the location of the cabstand

Key: username,jobId

 CONTRACT

Attribute Name Attribute

Type

Explanation

objectId Int(12) This integer holds id of the contract

 - 65 -

duration Datetime This shows the period in which the contract is valid

profitRate Currency This value represents the percentage of profit

compensationCost Int(12) This integer holds the money which the players must pay

when they leave the cabstand

careerLimit Int(12) This integer holds the maximum amount of career

Key: objectId

MEMBERS

Attribute

Name

Attribute

Type

Explanation

objectId Int(12) This integer holds the id of the supplier

contractId Int(12) This string holds the company of the supplier

cabstandName Varchar(16) This string holds the name of the cabstand

playerName Varchar(16) This string holds the name of the player

memberSince Datetime This shows the period in which the player has been a member

entranceFee Int(12) This integer holds the money which the players must pay when

they

enter the cabstand

Key: objectId

Foreign Key: contractId

10.SYNTAX SPECIFICATION

As every software development has its own syntax, we decided to determine our own

syntax specification for our project. Since “The TAXI” is a large project, having

programming guidelines from the beginning will be useful for us. This is a vital issue, because

it will be impossible to understand the code for others who are not the author of the code. As

the total lines will grow, it may become impossible to debug the code unless we obey a

common syntax.

Most of the rules we stated below are the general rules that are being widely used by

the coders all over the world. Here we are restating the ones that we will use in our project.

Our team will try to stick to the guidelines as much as possible, which are mentioned

below.

10.1 DATABASE NAMING CONVENTIONS
Names of entities in our database have capital letters at the beginning of each word

forming it. For example, the entity holding accounts of the players has the name “PlayerList”.

 - 66 -

The names of the attributes of the tables have an underscore (“_”) between the words forming

it, and are in lowercase. For example, the attributes of the “PlayerList” table may be as

follows: “user_name” and “career_id”.

10.2 FILE NAMING CONVENTIONS
Names of the files containing class definitions will have the same name as the class.

Documentation related file names will be initiated with “Doc_” prefix. And the

implementation files will be classified according to the module they are belonging to. They

will be given clear names describing their content and prefixed with the module they are in.

10.3 CLASSES
Classes will be declared in the following order: private data members and member

functions, protected data members and member functions, and public data members (if any)

and member functions. We will try not to use public variables as much as possible. We will

try to write global variable free code, since this causes serious conflicts between different

coders. We will use set and get methods instead. The names of the classes will be unique and

will start with “C_”.

10.4 METHOD AND FUNCTION DEFINITIONS
All the method and function definitions will be preceded with the following lines of

comments:

//--

// Description: Description of the method/function

// Prototype : <return type> <function name> (<parameter type> <parameter name>…)

// Parameters : <parameter name> <parameter description>

// Return : <return value>< return value description>

// Exception : <exception> <description of exception (when it is thrown)>

//---

The functions will have meaningful names in order to be understood easily. First letter

of the function will be small letters; all other letters are also small letters except the first

letters of the words. No underscores will be used. For example, “getPlayerName()” is a valid

function name for our project.

10.5 GENERAL CODING PRINCIPLES
 We will try to write as self explanatory code as possible. Since writing tricky but short

codes makes code impossible to understand even for the author of the code after some

time, we prefer self explanatory but long code.

 When debugging the code, if a correction is need, instead of quick solutions, we prefer

more clever solutions that are written after long thoughts. This is because most of the

time short and dirty solutions add two bugs to code when solving just one.

 We will use the CVS account that will be supplied to us by the department as

frequently as possible. Since four people working on the same project may corrupt

each others code, CVS may become a lifesaver for us in some point.

10.6 VARIABLE NAMING CONVENTIONS
In our project, the variable names will have some additional name prefixes that

indicate the scope of the variable. A global variable will be prefixed with "g_" if exists (we

hope it won’t), a static member variable will be prefixed with "s_".

 - 67 -

10.7 COMMENTING
Commenting of code is essential for later understanding and maintenance and is thus

mandatory in our source code. However, it is not efficient to over-comment the code. Only

the parts that cannot be immediately understood by looking at the code should be commented.

 Complicated calculations and operations should always be commented by adding a

multi-line comment block with detailed descriptions.

 All classes must have a brief and detailed description that is usually put right in front

of the class declaration in the header file.

 All member functions that are part of the class must have a brief description, if

applicable. This description must be put just before the method definition in the

implementation file.

 The documentation for public member variables or static class variables can only

contain a brief description and need not have a detailed description.

 All source files must have a header like the following at the beginning of the file:

//-------------------------------------

// The TAXI

// File: File Name

// Author: Author’s Name

// Version: x.y

// Edited: Date(dd.mm.yy) , Hour(hh:mm)

// Comment: Comments

//--------------------------------------

//--

// Long comments which need more than one line use

// this block comment style

//--

 - 4 -

11.GANNT CHART

